Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Expert Opin Pharmacother ; 24(4): 495-509, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2257737

ABSTRACT

INTRODUCTION: Multiple sclerosis (MS) is an immune-mediated disorder of the CNS manifested by recurrent attacks of neurological symptoms (related to focal inflammation) and gradual disability accrual (related to progressive neurodegeneration and neuroinflammation). Sphingosine-1-phosphate-receptor (S1PR) modulators are a class of oral disease-modifying therapies (DMTs) for relapsing MS. The first S1PR modulator developed and approved for MS was fingolimod, followed by siponimod, ozanimod, and ponesimod. All are S1P analogues with different S1PR-subtype selectivity. They restrain the S1P-dependent lymphocyte egress from lymph nodes by binding the lymphocytic S1P-subtype-1-receptor. Depending on their pharmacodynamics and pharmacokinetics, they can also interfere with other biological functions. AREAS COVERED: Our narrative review covers the PubMed English literature on S1PR modulators in MS until August 2022. We discuss their pharmacology, efficacy, safety profile, and risk management recommendations based on the results of phase II and III clinical trials. We briefly address their impact on the risk of infections and vaccines efficacy. EXPERT OPINION: S1PR modulators decrease relapse rate and may modestly delay disease progression in people with relapsing MS. Aside their established benefit, their place and timing within the long-term DMT strategy in MS, as well as their immunological effects in the new and evolving context of the post-COVID-19 pandemic and vaccination campaigns warrant further study.


Subject(s)
COVID-19 , Multiple Sclerosis , Sphingosine 1 Phosphate Receptor Modulators , Humans , Multiple Sclerosis/drug therapy , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Sphingosine-1-Phosphate Receptors/metabolism , Pandemics , Recurrence
2.
Cell Res ; 31(12): 1263-1274, 2021 12.
Article in English | MEDLINE | ID: covidwho-1414176

ABSTRACT

Sphingosine-1-phosphate (S1P) is an important bioactive lipid molecule in cell membrane metabolism and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, physiological homeostasis, and pathogenic processes in various organs. S1PRs are lipid-sensing receptors and are therapeutic targets for drug development, including potential treatment of COVID-19. Herein, we present five cryo-electron microscopy structures of S1PRs bound to diverse drug agonists and the heterotrimeric Gi protein. Our structural and functional assays demonstrate the different binding modes of chemically distinct agonists of S1PRs, reveal the mechanical switch that activates these receptors, and provide a framework for understanding ligand selectivity and G protein coupling.


Subject(s)
Sphingosine-1-Phosphate Receptors/agonists , Azetidines/chemistry , Azetidines/metabolism , Benzyl Compounds/chemistry , Benzyl Compounds/metabolism , Cryoelectron Microscopy , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Quaternary , Signal Transduction , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism
3.
Int J Mol Sci ; 21(18)2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-1207809

ABSTRACT

The recent coronavirus disease (COVID-19) is still spreading worldwide. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, binds to its receptor angiotensin-converting enzyme 2 (ACE2), and replicates within the cells of the nasal cavity, then spreads along the airway tracts, causing mild clinical manifestations, and, in a majority of patients, a persisting loss of smell. In some individuals, SARS-CoV-2 reaches and infects several organs, including the lung, leading to severe pulmonary disease. SARS-CoV-2 induces neurological symptoms, likely contributing to morbidity and mortality through unknown mechanisms. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with pleiotropic properties and functions in many tissues, including the nervous system. S1P regulates neurogenesis and inflammation and it is implicated in multiple sclerosis (MS). Notably, Fingolimod (FTY720), a modulator of S1P receptors, has been approved for the treatment of MS and is being tested for COVID-19. Here, we discuss the putative role of S1P on viral infection and in the modulation of inflammation and survival in the stem cell niche of the olfactory epithelium. This could help to design therapeutic strategies based on S1P-mediated signaling to limit or overcome the host-virus interaction, virus propagation and the pathogenesis and complications involving the nervous system.


Subject(s)
Coronavirus Infections/pathology , Lysophospholipids/metabolism , Nervous System/metabolism , Pneumonia, Viral/pathology , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine/analogs & derivatives , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Olfactory Mucosa/metabolism , Olfactory Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Signal Transduction , Sphingosine/metabolism
4.
Clin Exp Pharmacol Physiol ; 48(5): 637-650, 2021 May.
Article in English | MEDLINE | ID: covidwho-1075748

ABSTRACT

Global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing. Before an effective vaccine is available, the development of potential treatments for resultant coronavirus disease 2019 (COVID-19) is crucial. One of the disease hallmarks is hyper-inflammatory responses, which usually leads to a severe lung disease. Patients with COVID-19 also frequently suffer from neurological symptoms such as acute diffuse encephalomyelitis, brain injury and psychiatric complications. The metabolic pathway of sphingosine-1-phosphate (S1P) is a dynamic regulator of various cell types and disease processes, including the nervous system. It has been demonstrated that S1P and its metabolic enzymes, regulating neuroinflammation and neurogenesis, exhibit important functions during viral infection. S1P receptor 1 (S1PR1) analogues including AAL-R and RP-002 inhibit pathophysiological responses at the early stage of H1N1 virus infection and then play a protective role. Fingolimod (FTY720) is an S1P receptor modulator and is being tested for treating COVID-19. Our review provides an overview of SARS-CoV-2 infection and critical role of the SphK-S1P-SIPR pathway in invasion of SARS-CoV-2 infection, particularly in the central nervous system (CNS). This may help design therapeutic strategies based on the S1P-mediated signal transduction, and the adjuvant therapeutic effects of S1P analogues to limit or prevent the interaction between the host and SARS-CoV-2, block the spread of the SARS-CoV-2, and consequently treat related complications in the CNS.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , COVID-19/pathology , SARS-CoV-2 , Sphingosine-1-Phosphate Receptors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/pharmacology , Humans , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine-1-Phosphate Receptors/genetics , COVID-19 Drug Treatment
5.
EBioMedicine ; 58: 102898, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-665940

ABSTRACT

BACKGROUND: One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. METHODS: Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. FINDINGS: Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. INTERPRETATION: Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. FUNDING: This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).


Subject(s)
Aldehyde-Lyases/metabolism , Epirubicin/administration & dosage , Sepsis/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Autophagy , Cell Membrane Permeability , Cells, Cultured , Disease Models, Animal , Down-Regulation , Epirubicin/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Mucin-1/metabolism , Prospective Studies , Pulmonary Surfactant-Associated Protein D/metabolism , Random Allocation , Sepsis/etiology , Sepsis/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Treatment Outcome , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Front Immunol ; 11: 1102, 2020.
Article in English | MEDLINE | ID: covidwho-477856

ABSTRACT

With the sudden outbreak of COVID-19 patient worldwide and associated mortality, it is critical to come up with an effective treatment against SARS-CoV-2. Studies suggest that mortality due to COVID 19 is mainly attributed to the hyper inflammatory response leading to cytokine storm and ARDS in infected patients. Sphingosine-1-phosphate receptor 1 (S1PR1) analogs, AAL-R and RP-002, have earlier provided in-vivo protection from the pathophysiological response during H1N1 influenza infection and improved mortality. Recently, it was shown that the treatment with sphingosine-1-phosphate receptor 1 analog, CYM5442, resulted in the significant dampening of the immune response upon H1N1 challenge in mice and improved survival of H1N1 infected mice in combination with an antiviral drug, oseltamivir. Hence, here we suggest to investigate the possible utility of using S1P analogs to treat COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Indans/therapeutic use , Lysophospholipids/agonists , Oxadiazoles/therapeutic use , Pneumonia, Viral/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine/analogs & derivatives , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/prevention & control , Oseltamivir/therapeutic use , Pandemics , SARS-CoV-2 , Sphingosine/agonists
SELECTION OF CITATIONS
SEARCH DETAIL